XE6 Porting & Tuning Tips

XE6 — Where to start N e

e For most users and applications, using default settings work
very well

e For users who want to experiment to get the best
performance they can, the following presentation gives you
some information on compilers and settings to try

* While it doesn’t cover absolutely everything, the presentation
tries to address some of the tunable parameters which we have
found to provide increased performance in the situations
discussed

THE SUPERCOMPUTER COMPANY

1. Load the proper xtpe-<arch>

xtpe-mc12

If no module is loaded, and no ‘arch’ specified in
the compiler options, the compilers default to
the node type on which the compiler is running:
Which may not be the same as the compute
nodes !

2. Use the best Compiler

The best compiler is not the same for every application

—

Compiler Choices — Relative Strengths i 5

...from Cray’s Perspective

e PGI - Very good Fortran, okay C and C++

Good vectorization

Good functional correctness with optimization enabled

Good manual and automatic prefetch capabilities

Very interested in the Linux HPC market, although that is not their only focus
Excellent working relationship with Cray, good bug responsiveness

e Pathscale — Good Fortran, C, probably good C++

Outstanding scalar optimization for loops that do not vectorize
Fortran front end uses an older version of the CCE Fortran front end
OpenMP uses a non-pthreads approach

Scalar benefits will not get as much mileage with longer vectors

e Intel — Good Fortran, excellent C and C++ (if you ignore vectorization)
e Automatic vectorization capabilities are modest, compared to PGl and CCE
» Use of inline assembly is encouraged
* Focus is more on best speed for scalar, non-scaling apps
o

Tuned for Intel architectures, but actually works well for some applications on
AMD

CRANY

Compiler Choices — Relative Strengths

...from Cray’s Perspective

® GNU so-so Fortran, outstanding C and C++ (if you ignore vectorization)

Obviously, the best for gcc compatability

Scalar optimizer was recently rewritten and is very good

Vectorization capabilities focus mostly on inline assembly

Note the last three releases have been incompatible with each other (4.3, 4.4,
and 4.5) and required recompilation of Fortran modules

e® CCE - Outstanding Fortran, very good C, and okay C++

Very good vectorization

Very good Fortran language support; only real choice for Coarrays

C support is quite good, with UPC support

Very good scalar optimization and automatic parallelization

Clean implementation of OpenMP 3.0, with tasks

Sole delivery focus is on Linux-based Cray hardware systems

Best bug turnaround time (if it isn’t, let us know!)

Cleanest integration with other Cray tools (performance tools, debuggers,
upcoming productivity tools)

No inline assembly support

CRANY"

Recommended CCE Compilation Options

Use default optimization levels
e It’s the equivalent of most other compilers —O3 or —fast
Use —03,fp3 (or —03 —hfp3, or some variation)
e -0O3 only gives you slightly more than -02
e -hfp3 gives you a lot more floating point optimization, esp. 32-bit

If an application is intolerant of floating point reassociation, try a lower —
hfp number — try —hfp1 first, only —hfp0 if absolutely necessary

* Might be needed for tests that require strict IEEE conformance
e Or applications that have ‘validated’ results from a different compiler

Do not suggest using —Oipa5, -Oaggress, and so on — higher numbers are
not always correlated with better performance

Compiler feedback: -rm (Fortran) -hlist=m (C)
If you know you don’t want OpenMP: -xomp or -Othread0
man crayftn; man craycc ; man crayCC

Starting Points for the other Compilers e e

e PGI

-fast —Mipa=fast(,safe)

If you can be flexible with precision, also try -Mfprelaxed
Compiler feedback: -Minfo=all -Mneginfo

man pgf90; man pgcc; man pgCC; or pgfo0 -help

e Pathscale
e -Ofast Note: this is a little looser with precision than other compilers
e Compiler feedback: -LNO:simd_verbose=ON
* man eko (“Every Known Optimization”)

e GNU
-0O3 —ffast-math —funroll-loops
e Compiler feedback: -ftree-vectorizer-verbose=2
* man gfortran; man gcc; man g++

e Intel
o -fast
e Compiler feedback:
* man ifort; man icc; man iCC

Inda

CRANY

THE SUPERCOMPUTER COMPANY

3. Library Loading

Use the xtpe-mc12 module and it is all automatic

The OpenMP threaded BLAS/LAPACK library is the default if the
xtpe-mc8 or xtpe-mc12 module is loaded. The serial version is
used if ‘'OMP_NUM_THREADS’ is not set or set to 1.

4. MPT Environment Variables

Experiment with the Environment Variable Grab Bag

— I

MPICH_GNI_DMAPP_INTEROP e

e Only relevant for mixed MPI/SHMEM/UPC/CAF codes

e Normally want to leave enabled so MPICH2 and DMAPP can share the
same memory registration cache

e May have to disable for codes that call shmem_init after MPI_Init.
e May have to set to disable if one gets a traceback like this:

Rank 834 Fatal error in MPI_Alltoall: Other MPI error, error stack:
MPI_Alltoall(768)........................ MPI_Alltoall(sbuf=0x2aab9c301010,
scount=2596, MPI_DOUBLE, rbuf=0x2aab7ae01010, rcount=2596, MPI_DOUBLE,
comm=0x84000004) failed

MPIR_Alltoall(469).........cccceeeeennis

MPIC_lsend(453).....cccccovviurrnnennst

MPID_nem_Ilmt_RndvSend(102)..............
MPID_nem_gni_Imt_initiate_Imt(580)......: failure occurred while attempting to
send RTS packet

MPID_nem_gni_iStartContigMsg(869).......:
MPID_nem_gni_iSendContig_start(763).....:
MPID_nem_gni_send_conn_req(626).........:
MPID_nem_gni_progress_send_conn_req(193):
MPID_nem_gni_smsg_mbox_alloc(357).......:
MPID_nem_gni_smsg_mbox_block_alloc(268).: GNI_MemRegister
GNI_RC_ERROR_RESOURCE)

11

MPICH_GNI_MAX_EAGER_MSG_SIZE et

e Default is 8192 bytes
Maximum size message that can go through the eager protocol.

e May help for apps that are sending medium size messages, and do better
when loosely coupled. Does application have a large amount of time in
MPI_Waitall? Setting this environment variable higher may help.

e Max value is 131072 bytes.
Remember for this path it helps to pre-post receives if possible.

® Note that a 40-byte CH3 header is included when accounting for the
message size.

12

MPICH_GNI_NUM_BUFS et

e Default is 64 32K buffers (2M total)

e Controls number of 32K DMA buffers available for each rank to use in the
Eager protocol described earlier

e May help to modestly increase. But other resources constrain the
usability of a large number of buffers.

13

MPICH_GNI_RDMA_THRESHOLD e oo

e Default value is 1024.

e Controls the threshold at which the GNI netmod switches from using FMA
for RDMA read/write operations to using the BTE.

e Since BTE is managed in the kernel, BTE initiated RDMA requests can
progress even if the application isn't in MPI, allowing possibly for slightly
better chances of getting some overlap of communication with
computation.

e Owing to Opteron/HT quirks, the BTE is often better for moving data to/
from memories that are farther from the Gemini.

14

MPICH_SMP_SINGLE_COPY_SIZE e

e Default value is 8192 bytes.

e Specifies threshold at which the shared memory channel switches to a
single-copy (XPMEM) protocol for intra-node messages from a double
copy protocol.

15

MPICH_SMP_SINGLE_COPY_OFF e

e Starting with MPT 5.0.2, the default is single copy via XPMEM is enabled
(= “0’). In older versions single copy via XPMEM is disabled (= ‘1’).

e Specifies whether or not to use a XPMEM-based single-copy protocol for

intra-node messages of size MPICH_SMP_SINGLE_COPY_SIZE bytes or
larger.

16

THE SUPERCOMPUTER COMPANY

5. Tweak the
MPICH GNI MAX EAGER MSG SIZE

This allows for more async message transfer.

But the additional copy on the receiving side may offset
the gain.

This is important enough that we are mentioning twice!

17

6. Touch your memory, or someone
else will.

Memory Allocation: Make it local

o o CRANY"
Memory AIIocahon: Make It Iocal THE SUPERCOMPUTER COMPANY

e Linux has a “first touch policy” for memory allocation
e *alloc functions don’t actually allocate your memory
e Memory gets allocated when “touched”

e Problem: A code can allocate more memory than available
* Linux assumes “swap space,” we don’t have any
e Applications won’t fail from over-allocation until the memory is finally touched

® Problem: Memory will be put on the core of the “touching” thread
* Only a problem if thread 0 allocates all memory for a node

e Solution: Always initialize your memory immediately after allocating it
e |f you over-allocate, it will fail immediately, rather than a strange place in your
code
o If every thread touches its own memory, it will be allocated on the proper
socket / die.

19

7. Try different MPI Rank Orders

Is your nearest neighbor really your nearest neighbor?
And do you want them to be your nearest neighbor?

20

CRANY"
Ra n k P I a ce m e nt THE SUPERCOMPUTER COMPANY

e The default ordering can be changed using the following environment
variable:
e MPICH_RANK_REORDER_METHOD

e These are the different values that you can set it to:
e 0: Round-robin placement — Sequential ranks are placed on the next node in the
list. Placement starts over with the first node upon reaching the end of the list.
e 1:(DEFAULT) SMP-style placement — Sequential ranks fill up each node before
moving to the next.
e 2:Folded rank placement — Similar to round-robin placement except that each
pass over the node list is in the opposite direction of the previous pass.

e 3:Custom ordering. The ordering is specified in a file named
MPICH_RANK_ORDER.

@ When is this useful?
e Point-to-point communication consumes a significant fraction of program time
and a load imbalance detected
* Also shown to help for collectives (alltoall) on subcommunicators
» Spread out IO across nodes

21

Reordering example: GYRO | T

e GYRO 8.0 \
B3-GTC problem with 1024 processes

® Run with alternate MPI orderings

1 — SMP (Default) 11.26s
O — round-robin 6.94s
2 — folded-rank 6.68s

Note:
* The rank reordering only works on nodes. If you want to pack within a

node in a special way use the aprun —cc ‘cpu list’ .

* Hence to get a bit more out of the folded-rank option use aprun —cc
0,6,12,18,19,13,7,1,2,8,14,20,21,15,9,3,4,10,16,22,23,17,11,5

This folds across nodes, and folds within dies on a node.

22

Reordering example: TGYRO = reemcowmcnn

e TGYRO 1.0
Steady state turbulent transport code using GYRO, NEO, TGLF
components

® ASTRA test case
Tested MPI orderings at large scale
Originally testing weak-scaling, but found reordering very

useful
Reorder TGYRO wall time (min)
method 20480 40960 81920
Cores Cores Cores
Default 99m 104m 105m

Round-robin 66m 63m 72m 4mmHuge win!

23

Rank Reordering Case Study

Application data is in a 3D space, X *Y * Z
300 [

Lower is better

N

o)

o
I

N

o

o
|

-

o)

o
|

i before rank rearrangement

—#— Jaguar XT5

-
(@)
o

o)l
(@)
IIII

Cost per gridpoint per timestep [us]

1 10 100 1000
Number of Cores

10000 100000

o

Note: Using blocks or slabs within a node may help some
communications. For a 6x4 chunk, you could try a 4 6x1,
or 4 3x2 chunks, with each die getting one chunk.

CRANY

THE SUPERCOMPUTER COMPANY

e Communication is

nearest-neighbor.
(Halo exchange)

Default ordering
results in 12x1x1
block on each node.
(Istanbul example,
12 cores)

e A custom reordering

is now generated:
3x2x2 blocks per
node, resulting in
more on-node
communication

: : =AY
Rank order choices: Many options, depends on patternm:= ="

e Nodes marked X heavily use a shared
resource
e If the shared resource is:
e Memory bandwidth: scatter the X's
° ¢ ©°o ° * Network bandwidth to others, again
°© o o o scatter

e Network bandwidth among
themselves, concentrate

® Check out pat_report, grid_order, and mgrid_order for
generating custom rank orders based on:

* Measured data
e Communication patterns
* Data decomposition

Slide 25

3. Try Huge Pages

Gemini loves to use Huge pages ©

Why use Huge Pages e

e® The Gemini perform better with HUGE pages than with 4K
pages.

e HUGE pages use less GEMINI resources than 4k pages (fewer
bytes).

e Your code may run with fewer TLB misses (hence faster).

27

CRANY
Huge Pages i How to use THE SUPERCOMPUTER COMPANY

e Link in the hugetlbfs library into your code ‘-lhugetlbfs’

e Set the HUGETLB_MORECORE env in your run script.
e Example : export HUGETLB_MORECORE=yes

® Use the aprun option —mii##h to ask for ### Meg of HUGE
pages.
e Example : aprun —m500h (Request 500 Megs of HUGE pages as
available, use 4K pages thereafter)
e Example : aprun —-m500hs (Request 500 Megs of HUGE pages, if
not available terminate launch)

® Note: If not enough HUGE pages are available, the cost of
filling the remaining with 4K pages may degrade
performance.

28

9. Tune malloc.

But isn’t that a system call?

GNU Malloc e 5

e GNU malloc library
e malloc, calloc, realloc, free calls
e Fortran dynamic variables

e Malloc library system calls
e Mmap, munmap =>for larger allocations
e Brk, sbrk =>increase/decrease heap

e Malloc library optimized for low system memory use
e Canresult in system calls/minor page faults

Improving GNU Malloc e e

e Detecting “bad” malloc behavior
e Profile data => “excessive system time”

e Correcting “bad” malloc behavior
e Eliminate mmap use by malloc
* Increase threshold to release heap memory

e Use environment variables to alter malloc
e MALLOC_MMAP_MAX_ =0
e MALLOC_TRIM_THRESHOLD_ =536870912 (or appropriate size)
(only trims heap when this amount total is freed)

® Possible downsides
e Heap fragmentation
e User process may call mmap directly
e User process may launch other processes

® PGIl’'s —-Msmartalloc does something similar for you at compile time

31
Inda

THE SUPERCOMPUTER COMPANY

10. Learn the ins and outs of
aprun

Are you launching the job that you think you are?

32

CRANY

Running Jobs: Basic aprun options
Option Description
-D Debug (shows the layout aprun will use)
X Number of MPI tasks
Note: If you do not specify the number of tasks to aprun, the system will default
to 1.
-N Number of tasks per Node
-m Memory required per Task
-d Number of threads per MPI Task.

Note: If you specify OMP_NUM_THREADS but do not give a —d option, aprun will
allocate your threads to a single core. You must use OMP_NUM_THREADS to
specify the number of threads per MPI task, and you must use —d to tell aprun
how to place those threads

-S Number of Pes to allocate per NUMA Node
-SS Strict memory containment per NUMA Node

33

 cRasy
Aprun examples e

e To run using 1376 MPI tasks with 4 threads per MPI task:
export OMP_NUM_THREADS=4
aprun -ss -N 4 -d 4 -n 1376 ./xhpl_mp
e To run without threading:
export OMP_NUM_THREADS=1
aprun —ss —N 16 -n 5504 ./xhpl_mp

